
WHITEPAPER

Transforming Quality 
Assurance Approach 
for Product Excellence 
The Evolving Practices and Technologies 
in Modern Software Testing 

© Gleecus TechLabs Inc. All rights reserved.



Table of Contents

Executive Summary 02

Quality Assurance as the Bedrock of IT Products and Service 03

Evolving Areas of Testing  04

Database Testing 04

Microservices Testing 06

Cloud Services Testing 06

API Testing 07

IoT Testing 08

Technologies and Processes Defining the Modern QA Approach 09

Chaos Engineering 09

BDT 10

Shift-Left Approach 11

Generative AI 12

DevSecOps  13

ML in Testing  14

Test Automation 14

Conclusion 16

About Us  17

Transforming Quality Assurance Approach for Product Excellence - Whitepaper   1



This whitepaper delves into the profound impact that evolving technologies, such as artificial intelligence, 

machine learning, generative AI, and cloud computing, introduce into the Quality Assurance (QA) processes 

within a typical software development lifecycle. 

Within the scope of this paper, we embark on an exploration of various facets, including how the role of the 

test plan extends beyond the realm of the user interface. Additionally, we delve into strategies for mitigating 

technical debt through the adoption of a "shift left" approach, which involves the early detection and 

rectification of flaws and vulnerabilities at the inception of the development phase. 


 


In a software development landscape that is progressively becoming more inclusive and accessible, thanks 

to the rise of low-code approaches, the demand for a transformation in the way test scripts are authored 

becomes evident. We investigate this transition from the era of labor-intensive test script coding to the 

creation of more user-friendly Business Validation Tests (BVT). This shift empowers non-technical 

stakeholders, including product managers and C-suite executives, to actively engage in the testing 

process. 


 


Throughout this whitepaper, we provide valuable insights into how organizations can strategically adopt 

cutting-edge technologies to enhance their QA practices. These enhancements serve as the robust 

foundation for delivering superior IT products and services. 

Executive Summary 

Transforming Quality Assurance Approach for Product Excellence - Whitepaper   2

The integration of AI and machine learning in QA processes is not just 
enhancing efficiency but also transforming how we approach software 
testing altogether. - Gartner 



In today's rapidly evolving digital landscape, the critical role of QA cannot be overstated. QA serves as 

the linchpin, the underpinning, and the bedrock upon which the success and reliability of IT products and 

services are built. To truly grasp the magnitude of its significance, one must look beyond the surface and 

into the realm of facts and statistics that paint a compelling picture of QA's pivotal role in the modern 

world of technology. 


 


Recent statistics underscore the increasing reliance on digital solutions. As of the last available data, 

there were a staggering 4.9 billion active internet users globally, a number representing over 60% of the 

world's population. Mobile device usage continues its meteoric rise, with more than 5.2 billion unique 

mobile users. In the wake of the COVID-19 pandemic, remote work and online commerce have become 

ubiquitous, with a 44% increase in e-commerce sales worldwide in 2020 alone. 


 


These trends are indicative of a digital transformation that has accelerated at an unprecedented pace. In 

this context, the quality and reliability of IT products and services are no longer mere aspirations but 

essential requirements for businesses, governments, and individuals alike. 


 


In the ever-evolving landscape of software development, where innovative technologies such as Cloud, 

Analytics, AI, ML Automation and third-party tools are seamlessly integrated, the bar for quality 

standards has been set high. Users now demand nothing less than flawless performance and 

functionality, whether the software serves external customers or internal operational needs. In response, 

businesses are tasked with the critical mission of ensuring the impeccable functionality of every facet of 

their software, delivering nothing short of exceptional customer experiences. 


 


Beyond the realm of customer satisfaction, a robust Quality Assurance (QA) framework presents 

substantial advantages for the software product's operational, developmental, and business 

development facets, positioning it as an indispensable asset in delivering unparalleled product value. 


 


Foremost among the virtues of QA lies its capacity to unearth bugs and errors during the early phases of 

development, epitomizing the "shift-left" approach. Through comprehensive and meticulous testing, QA 

experts proficiently pinpoint issues encompassing reliability, functionality, usability, portability, security, 

and compliance. This proactive QA methodology paves the way for the expedient resolution of these 

issues, thereby averting the accrual of technical debt. 


 


Moreover, a diligently executed QA regimen engenders the creation of software that is both steadfast 

and competitive. By perpetually subjecting the software to rigorous tests and validations across diverse 

technical landscapes, QA professionals substantially enhance its overall quality, ensuring not only that it 

aligns with but surpasses customer expectations. 

Transforming Quality Assurance Approach for Product Excellence - Whitepaper   3

Quality Assurance as the Bedrock 
of IT Products and Services 



Database testing plays a crucial role in ensuring the integrity and quality of data stored within a database 

system. It involves various testing methodologies and techniques to validate the structural, functional, 

and non-functional aspects of the database. 

One of the fundamental aspects of database testing is evaluating the compliance with ACID properties 

(Atomicity, Consistency, Isolation, Durability). These properties ensure that transactions are processed 

reliably and consistently.  



Techniques to check ACID properties involve comprehensive testing strategies. Unit tests evaluate 

individual components to verify atomicity. Functional and integration tests validate consistency by 

ensuring data remains valid through various operations. Isolation is ensured through concurrency and 

multi-user testing, simulating real-world scenarios. Durability is confirmed by subjecting the system to 

failure and recovery tests, ensuring committed transactions survive system crashes. Through these 

techniques, databases can be thoroughly evaluated to adhere to the essential ACID properties, 

promoting robust, reliable, and consistent transactional behavior. 

Database server validation is performed to ensure that the server configuration aligns with the desired 

specifications. This includes validating security measures, performance optimization settings, and 

backup mechanisms. 

Transforming Quality Assurance Approach for Product Excellence - Whitepaper   4

Database Testing 

ACID properties 

Server validation 

Impact of Generative AI and 
LLM on Various Industries 

Testing in today’s environments is more complex than a few years ago. The more complex the frontend 

features get the more intricate the backend architecture becomes. Application complexity gives rise to 

handling of high frequency transactions that can be aptly supported by advanced databases like cloud. 

Protecting data integrity mostly through a cloud infrastructure to synchronize the collection and retrieval 

of data is another important aspect. To gain speed and improve fault tolerance applications today come 

as a pack of distributed services in a microservice based architecture creating an increased complexity, 

overhead, and friction in testing. The specialized need of testing gives rise to separate areas of testing 

and warrants a lot of preparation, infrastructure building, tech integration, and maintenance. 



White box and black box testing are functional testing approaches to check if all the expected 

functionalities of a database system are met.

The white box approach, also known as structural 

or glass box testing, involves examining the 

internal logic and structure of the database. 

Testers have detailed knowledge of the database 

architecture, schema, and code. They design 

tests based on this understanding to validate the 

accuracy of SQL queries, stored procedures, 

triggers, and other components. This approach 

aims to uncover vulnerabilities, such as improper 

data handling and security breaches, by 

analyzing the database's inner workings. 

Apart from this, non-functional tests like load and stress testing simulate real-world scenarios to evaluate 

how well the database handles high volumes of concurrent users or excessive workloads. 


 


Ultimately, thorough database testing helps identify potential issues early on to maintain data integrity, 

optimize performance, and enhance user experience. By adhering to industry best practices in this area, 

organizations can confidently rely on their databases for critical operations while ensuring high-quality data 

management. 

The white box approach, also known as structural or 

glass box testing, involves examining the internal 

logic and structure of the database. Testers have 

detailed knowledge of the database architecture, 

schema, and code. They design tests based on this 

understanding to validate the accuracy of SQL 

queries, stored procedures, triggers, and other 

components. This approach aims to uncover 

vulnerabilities, such as improper data handling and 

security breaches, by analyzing the database's inner 

workings. 

Transforming Quality Assurance Approach for Product Excellence - Whitepaper   5

White Box and Black Box Testing 

White Box ApproachBlack Box Approach

Input Input

Internal structureHidden or unknown Known

Not needed Needed

Not required Required

Functional behavioral test Structural, logic test 

On the basis of req. spec document After detail design document

Higher levels Lower levels

knowledge of implementation

knowledge of programming

Type of test

Testing initiated

Level of software testing

Output
Output



Microservices testing is a critical aspect of ensuring the reliability and functionality of a microservices 

architecture. It involves various types of tests tailored to the unique characteristics of microservices, each 

serving a specific purpose in validating the system's behavior and performance. 

Cloud testing has become an integral part of software development and deployment. With the rise of cloud 

computing, organizations are leveraging various "as-a-Service" (aaS) offerings like Platform-as-a-Service 

(PaaS), Software-as-a-Service (SaaS), Infrastructure-as-a-Service (IaaS) to streamline their testing 

processes. 


 


One of the key reasons for cloud testing is to check integration of an application to a cloud environment, 

specifically for SaaS applications. This also benefits testers to simulate real-world scenarios and assess the 

performance and scalability of their applications under different user loads. 

Microservices are designed to be independent 

and isolated, making unit tests crucial to validate 

each microservice's functionality at a granular 

level in isolation. Unit tests focus on validating 

individual units of code, such as functions, 

methods, or small components, in isolation.  

Integration tests verify the interactions and integrations between multiple microservices, ensuring that 

they function seamlessly when combined. These tests are essential for identifying issues that may arise 

when integrating various microservices together. 

Contract tests validate the contracts or 

agreements between different microservices. 

These tests ensure that the interactions and 

integrations between microservices align with the 

specified contracts, preventing any regressions 

when changes are made. 

End-to-end tests evaluate the entire microservices ecosystem, simulating real-world user scenarios. 

These tests ensure that the microservices work together harmoniously to deliver the intended 

functionality and user experience across the entire system. 


 


Cross browser testing, a vital component of end-to-end testing, ensures that the microservices-based 

application functions consistently across different web browsers. Cross browser testing tools allow 

testing on a wide range of browsers and operating systems to guarantee a consistent user experience 

regardless of the user's browser choice. 

Transforming Quality Assurance Approach for Product Excellence - Whitepaper   6

Microservices Testing 

Cloud Services Testing 

Unit tests 

Integration tests 

Contract tests 

End-to-End tests 



Transforming Quality Assurance Approach for Product Excellence - Whitepaper   7

Multi-tenancy testing is another important aspect of cloud testing. As SaaS applications cater to multiple 

users simultaneously, it is crucial to ensure that data isolation and security measures are in place. By 

conducting thorough multi-tenancy testing, organizations can validate the effectiveness of their 

application's architecture in maintaining data separation between different tenants. 

Functional testing focuses on verifying that the API behaves as expected in different scenarios. This 

includes testing edge cases and boundary values to ensure that the API handles all possible inputs 

correctly. By thoroughly examining the API's responses to different inputs, testers can identify any issues 

or inconsistencies in its behavior. 

Performance testing is another important aspect of API testing. It involves evaluating the response time 

and throughput of an API under different loads and stress conditions. By measuring these metrics, testers 

can assess how well the API performs under heavy usage and identify any potential bottlenecks or 

performance issues. 

Disaster recovery testing is a critical component when it comes to cloud-based applications. With the 

ability to quickly replicate environments and data backups, organizations can test their disaster recovery 

plans effectively within a cloud environment. This ensures that business-critical systems can be restored 

promptly in case of any unforeseen events. 



Furthermore, as more organizations adopt cloud-native software development methodologies, it becomes 

crucial to utilize specialized tools designed for cloud-based environments. Cloud-based tools offer 

features such as network testing and security testing specifically tailored for the unique challenges posed 

by distributed systems and virtualized infrastructure. 

Multi-tenancy testing 

Functional testing  

Performance testing 

Disaster recovery testing 

API testing plays a crucial role in ensuring the functionality and reliability of software applications. It 

involves testing the various aspects of an application programming interface (API), including functional 

testing, performance testing, and reliability testing. 

API testing 



Transforming Quality Assurance Approach for Product Excellence - Whitepaper   8

Reliability testing is also a critical part of API testing. Testers simulate error scenarios such as network 

failures or server downtime to ensure that the API handles such situations gracefully. This includes 

verifying that appropriate error codes are returned, error handling mechanisms are in place, and proper 

documentation is provided to guide developers on how to handle errors. 

Involves connecting a device to a mobile or computer, running software, and performing necessary 

checks—simulating a virtual machine on the device. This process consists of a series of testing that helps 

in validating the functionality, performance and security of the devices and the software in the IoT 

system. 

Utilizes emulators running on different machines, providing a test environment for applications. This 

approach proves valuable when developing apps for diverse devices, allowing testing without setting up 

unique development environments for each device. 


 


Understanding hardware compatibility for specific tests is vital in emulator testing. IoT testing is an 

evolving domain necessitating diverse testing strategies. 

Thorough documentation review is essential for successful API testing. Testers need to review the 

documentation provided for the API and validate the accuracy and completeness of the API 

documentation, including endpoint descriptions, request/response examples, authentication methods, 

and error handling details. 

Reliability testing 

Device testing 

Emulator testing 

Documentation review 

IoT testing ensures readiness for real-world applications by assessing an IoT solution through various tests. 

Its goal is to identify and address vulnerabilities, instilling confidence in its expected functionality upon 

deployment. 

Key IoT testing features comprise: 

IoT Testing 



Technologies and Processes 
Defining the Modern QA Approach 

Transforming Quality Assurance Approach for Product Excellence - Whitepaper   9

Chaos Engineering 

Chaos engineering involves deliberate disruption of a system through experimental processes to 

pinpoint vulnerabilities, foresee failures, anticipate user experience, and improve system architecture. 

This practice assists engineering teams in improving the resilience of an organization’s infrastructure by 

reconfiguring and reinforcing it. The driving forces behind the adoption of chaos engineering are 

mounting consumer expectations and growing system complexity. During the chaos testing the 

application being tested is subjected to known failures within a specific radius and any abnormalities 

are noted and developers work on checking the vulnerabilities. Typically a web application is vulnerable 

to four types of attacks. Chaos engineering simulates these attacks in a controlled manner. 

Netflix pioneered the use of Chaos Engineering to ensure the resilience of their microservices 

architecture. By deliberately introducing failures into their production environment using their 

tool, Chaos Monkey, they identified weaknesses and improved their system's robustness. 

Resource attack 

Resource attack involves starving the 

system of resources like CPU, memory, I/

O, or disk space. It measures how the 

service degrades when a system is 

denied resources. 

State attack 

This involves disrupting state within the 

architecture and check if the service fails or 

is able to handle it. 

Network attack 

This test involves tampering with the 

network causing data loss or delay in traffic. 

This test is done to infer how the system 

reacts when they are deprived of accessing 

certain dependencies like third-party 

services or APIs.

Application attack 

This kind of testing involves overloading the 

traffic to an application and putting the 

application under strain. The objective of 

this kind of load test is to validate the 

scalability of an application. 

c
a

s
e

 s
t

u
d

y

https://insights.sei.cmu.edu/blog/devops-case-study-netflix-and-the-chaos-monkey/


BDT or behavior driven testing is a software development and testing methodology where the tests are 

written from a user perspective and behavior. Tests are written using domain-specific language (DSL) in a 

human readable syntax to emphasize collaboration and communication among various stakeholders, 

including developers, QA teams, product managers, and non-technical stakeholders. 

Other popular BDT frameworks are SpecFlow, Quantum, JBehave etc. 

 BDT is based on the following principles: 

Cucumber's salient features for Behavior-Driven Testing (BDT) include: 

� Given: Describes the preconditions or the initial context before the behavior is exhibited.�

� When: Specifies the actions or events that trigger the behavior.�

� Then: Defines the expected outcomes or results after the actions in the "When" step are performed. 

� Collaboration: BDT encourages collaboration between developers, testers, and business stakeholders. 

This helps to ensure that everyone is on the same page and that the tests are aligned with business 

needs.�

� Communication: BDT uses a domain-specific language to write tests in a way that is easy to 

understand for everyone involved in the development process. This helps to improve communication 

and reduce misunderstandings.�

� Behavior: BDT focuses on testing the behavior of the software, rather than the implementation. This 

makes the tests more robust and easier to maintain. 

� Human-Readable: Gherkin syntax allows non-technical stakeholders to define behavior. �

� Collaborative: Facilitates teamwork and shared understanding of software behavior. �

� Executable Documentation: Specifications are converted into automated, living documentation. �

� Integration-Friendly: Easily integrates with diverse technologies and frameworks. �

� Traceability: Links Gherkin steps to executable code, ensuring comprehensive coverage and clarity. 

Transforming Quality Assurance Approach for Product Excellence - Whitepaper   10

behavior driven testing (BDT)

Principles of BDT 

Cucumber for BDT 

Given-When-Then (GWT) syntax 



Transforming Quality Assurance Approach for Product Excellence - Whitepaper   11

Focuses on early unit and integration testing, emphasizing APIs and cross-browser compatibility. 

Emphasizes delivering information in smaller, early unit-tested code portions rather than broader system-

level operational and acceptance testing. 

Traditional shift left testing

Shift-left testing is when the testing is conducted on the phases to the left side of the symbolic 

representation of the software development cycle as an infinite loop. This means testing, quality, and 

performance evaluation are performed right at the beginning phases of planning, design, and often even 

before code is written. Shift left thus helps to understand whether the software even meets customer 

requirements at the early stages of development. Accordingly, changes can be implemented way ahead 

before the software moves into production. 


Shift left can be categorized into four types 

Shift-Left Approach 

Gains popularity for teams transitioning from waterfall to smaller, incremental project development. 

Involves systems-level operational and acceptance testing in smaller, incremental phases, making it 

effective for validating large and complex systems. 

Incremental shift left testing 

Shift Left
Ensures software meets design

Shift Right
Ensures performance, resilience, reliability



Transforming Quality Assurance Approach for Product Excellence - Whitepaper   12

Generative AI has the capability to build comprehensive plans, generate large volumes of data, and 

explore data beyond human speed. It finds distinct implementations at every stage of the software 

development lifecycle. 

Involves continuous, short sprints during development without addressing operational performance. 

Validates adherence to basic requirements architecture in an agile or DevOps development environment. 

Aims to reduce errors introduced in requirements definition, architecture, and design phases. Tests for 

executable requirements, architecture, and design, allowing testing to begin almost immediately rather 

than waiting for completion of all other test cycles. 

Generative AI is a powerful tool for requirement analysis and test coverage in software testing. Through 

automated requirement generation, it can analyze existing artifacts and produce new or refined 

requirements, ensuring a comprehensive set. By understanding the semantic meaning of requirements, AI 

can enhance clarity and consistency while identifying conflicts for resolution. Leveraging historical project 

data, it identifies patterns and suggests potential testing areas, aiding in more targeted testing efforts. 

Agile/DevOps testing 

Model-Based shift left 

Requirement phase 

Google adopted a shift-left testing approach to enhance the quality and speed of their 

software development process. By integrating testing early in the development cycle, they 

significantly reduced bugs and improved time-to-market.

c
a

s
e

 s
t

u
d

y

Generative AI 

Generative AI significantly aids in test case development by automating the generation of diverse, complex 

test scenarios. By leveraging machine learning algorithms, it analyzes existing test cases, identifies 

patterns, and creates new ones. This process enhances test coverage, detecting potential issues in 

software. Generative AI also helps in load testing, simulating thousands of users and identifying system 

limitations. Furthermore, it accelerates agile development by rapidly generating test cases for new 

features, improving efficiency and allowing QA teams to focus more on strategic testing and ensuring high 

software quality. Ultimately, generative AI revolutionizes test case creation, optimizing the testing process 

and enhancing overall product reliability. 

Test case development 

https://cloud.google.com/blog/products/identity-security/shift-left-on-google-cloud-security-invest-now-save-later


Transforming Quality Assurance Approach for Product Excellence - Whitepaper   13

DevSecOps, an extension of the DevOps approach, integrates security practices into the software 

development and delivery process, aiming to ensure security is a shared responsibility and is built into 

the software from the onset of SDLC. When it comes to testing, DevSecOps offers several benefits. 

DevSecOps promotes continuous monitoring of applications and infrastructure in real-time. Security 

testing tools continuously monitor the application for potential vulnerabilities, enabling rapid response to 

emerging security threats. 

DevSecOps encourages threat modeling and risk assessment during the planning and design stages. 

Security considerations are integrated into the development process by identifying potential threats and 

assessing their impact on the application. 

Security controls and requirements are treated as code, enabling versioning, peer reviews, and 

automation. Security configurations are managed alongside application code, ensuring consistent and 

secure deployment. 

Continuous monitoring 

Threat modeling and risk assessment 

Security as code 

Salesforce utilized generative AI to automate test case development, resulting in improved test 

coverage and faster development cycles. This approach enabled non-technical stakeholders to 

contribute to the testing process, enhancing overall product quality.

c
a

s
e

 s
t

u
d

y

DevSecOps 

Since BDT uses human understandable language to write test cases, generative AI finds a significant 

contribution to writing realistic, diverse, and compliant test data. Gathering original test data might be 

difficult and time taking, generative AI performs data synthesis to create synthetic data from scratch, 

based on predefined rules, models, or patterns. With proper prompts even from a non-technical person, 

generative AI can create test scripts in a very short time. 

Generative AI for BDT 

https://www.salesforce.com/news/stories/generative-ai-protein-research/


Machine Learning (ML) offers several ways to enhance software testing processes, making them more 

efficient, effective, and accurate. 

Test automation has revolutionized the software testing landscape, offering efficiency, repeatability, 

and speed in testing processes. Two prominent approaches within test automation are Robotic 

Process Automation (RPA) testing and Scriptless Automation Testing. 

Transforming Quality Assurance Approach for Product Excellence - Whitepaper   14

ML in testing 

Test Automation 

ML algorithms can analyze application code and 

automatically generate test cases, identifying 

potential scenarios that may not be apparent to 

human testers. This accelerates the test case 

creation process and improves test coverage. 

ML models can predict areas of the application 

that are more prone to defects based on 

historical test data, helping testers focus their 

efforts on critical areas and prioritize testing 

accordingly. 

ML can detect anomalies or unexpected 

behaviors in the application, helping identify 

potential bugs or areas that require further 

investigation. This anomaly detection 

contributes to robust test coverage. 

ML can prioritize test cases based on various 

factors like code changes, historical defect data, 

and business impact, ensuring that critical areas 

of the application are thoroughly tested first. 

ML algorithms can analyze logs and identify patterns related to errors or issues, assisting 

in diagnosing problems and troubleshooting more efficiently. 

Robotic Process Automation (RPA) mimics human interactions with software systems, automating 

repetitive tasks and processes. In the context of testing, RPA bots can replicate user actions and 

interactions with an application, allowing for end-to-end testing of workflows. RPA testing helps ensure 

software applications perform as expected from a user's perspective by automating actions like data 

input, form submissions, and navigation. It enables faster testing cycles and frees testers to focus on 

more complex scenarios. 

Test case generation  Predictive analysis 

Bugs and anomalies detection  Test prioritization 

Log analysis 

RPA testing 



Transforming Quality Assurance Approach for Product Excellence - Whitepaper   15

Scriptless automation, also known as codeless or no-code automation, enables testers with limited or no 

programming skills to create and execute automated tests. This approach typically involves using intuitive 

graphical interfaces or pre-defined components to design test cases. Testers can create automation 

scripts by dragging and dropping elements, defining workflows, and configuring test steps. Scriptless 

automation accelerates the test creation process, reduces dependency on coding expertise, and 

promotes collaboration between technical and non-technical team members. 

Scriptless automation testing 



Conclusion 

Transforming Quality Assurance Approach for Product Excellence - Whitepaper   16

The evolving technologies discussed in this whitepaper offer a number of benefits to the QA process. 

By integrating these technologies to the QA practices, product engineering teams can improve the 

efficiency, effectiveness, coverage, and risk reduction of their testing efforts, leading to delivery of 

robust software in a very limited time.  


 


Adoption to modernization in the QA process need not be attempted all at once. Businesses can start 

by adopting a few technologies that are most relevant to their needs and then gradually expand their 

adoption over time. 


 


It is important to get buy-in from stakeholders, such as developers and business managers, before 

adopting new technologies. This will help to ensure that the new technologies are properly supported 

and that they are used in a way that benefits the entire team. Measuring the success of QA 

modernization effort can help to understand which technologies bring a major overhaul to the QA 

practices and encourage to explore more QA related cutting edge technologies. 

Assess and plan
Implement 
Foundational 
Practices 

Upskilling and 
Advanced 
Integration 

Continuous 
Improvement 
and Monitoring 

Evaluate Current State 


Define Goals 


Prioritize Technologies 

Shift-Left Testing 


API Testing 


Test Automation 

DevSecOps Integration 


Machine Learning for Testing 


Performance Monitoring 

Behavior-Driven 
Development (BDD) 

Generative AI 


Cloud Testing 

A Roadmap to Adopting Modern QA Technologies and Practices 



Gleecus TechLabs Inc. is an ISO 9001:2015 – Quality Management and ISO/IEC 20000-1:2018 – IT 

Service management certified IT innovation partner for startups, SMBs, and enterprises helping clients 

envision, build, and run more innovative and efficient businesses. We are an experienced member of 

the AWS partner network (APN) catering to a diverse range of Cloud, Data Engineering, AI, and 

Managed Services needs for our clients. 




We assess your existing state of QA and identify bottlenecks to set up a roadmap for phased adoption 

of advanced testing practices and technologies. We keep a continuous monitoring of the efforts and 

outcomes of the new practices and train your stakeholders to champion them. 

Our team empowers businesses to deliver high quality software for their users 
by modernizing the QA practices. Our QA roadmap continuously evolves, 
responding to your business needs and customer feedback by integrating the 
best-in-class solutions. 


About Gleecus TechLabs Inc.

Gleecus TechLabs Inc. is an ISO 9001:2015 and ISO/IEC 20000-1:2018 certified Forward Thinking Digital Innovation 

partner creating impactful business outcomes with Engineering & Experience. With deep focus on Cloud, Data, Product 

Engineering, AI and Talent we help organizations become Digital Natives. 

Email: hello@gleecus.com

Phone: +1 347 947 2022
 www.gleecus.com

Transform your testing practices 
adopting cutting-edge technologies for 
high quality software delivery 

Connect with Us 

About Us

mailto:hello@gleecus.com
https://www.linkedin.com/company/gleecus
https://www.facebook.com/gleecus
https://twitter.com/gleecus
https://www.instagram.com/gleecus
https://www.youtube.com/@gleecustechlabs
https://gleecus.com/
https://gleecus.com/lp-quality-assurance/



